陕西省2023-2024年学年度八年级第一学期期中学业水平测试数学

陕西省2023-2024年学年度八年级第一学期期中学业水平测试数学试卷答案,我们目前收集并整理关于陕西省2023-2024年学年度八年级第一学期期中学业水平测试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

陕西省2023-2024年学年度八年级第一学期期中学业水平测试数学试卷答案

2.已知p:x2+mx+1=0有两个不相等的负实数根,q:方程4x2+(4m-2)x+1=0无实数根.
(1)若q为真,求实数m的取值范围;
(2)若p为真q为假,求实数m的取值范围.

分析(I)由a1=$\frac{1}{2}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$(n∈N*),两边取倒数可得:$\frac{1}{{a}_{n+1}}$=$\frac{1}{2}$+$\frac{1}{{a}_{n}}$,即可证明,再利用等差数列的通项公式即可得出an
(II)对任意正整数n,都有(1+$\frac{{b}_{n}}{{{a}^{2}}_{n}}$)•n=$\frac{5{n}^{2}+10n+9}{4n+4}$成立,可得bn=$\frac{1}{n(n+1)}$,再利用“裂项求和”即可得出.

解答证明:(I)∵a1=$\frac{1}{2}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$(n∈N*),两边取倒数可得:$\frac{1}{{a}_{n+1}}$=$\frac{1}{2}$+$\frac{1}{{a}_{n}}$,∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{1}{2}$.
∴数列{$\frac{1}{{a}_{n}}$}为等差数列,首项为2,公差为$\frac{1}{2}$.
∴$\frac{1}{{a}_{n}}$=2+$\frac{1}{2}(n-1)$=$\frac{n+3}{2}$,∴an=$\frac{2}{n+3}$.
(II)对任意正整数n,都有(1+$\frac{{b}_{n}}{{{a}^{2}}_{n}}$)•n=$\frac{5{n}^{2}+10n+9}{4n+4}$成立,
∴$(1+\frac{(n+3)^{2}{b}_{n}}{4})•n$=$\frac{5{n}^{2}+10n+9}{4n+4}$,
化为n•(n+3)2bn=$\frac{5{n}^{2}+10n+9}{n+1}$-4n=$\frac{(n+3)^{2}}{n+1}$,
∴bn=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴Sn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$.
∴$\frac{1}{2}$≤Sn<1.

点评本题考查了等差数列的通项公式、“裂项求和”、不等式的性质、数列的单调性,考查了变形能力、推理能力与计算能力,属于中档题.

话题:
上一篇:江西省瑞昌市2023-2024学年度上学期七年级期中考试试卷q物理
下一篇:江西省九江市2023-2024学年度上学期八年级第一次阶段性学情评估q物理