2023年秋季黄冈市部分普通高中高三年级阶段性教学质量检测数学试卷答案,我们目前收集并整理关于2023年秋季黄冈市部分普通高中高三年级阶段性教学质量检测数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2023年秋季黄冈市部分普通高中高三年级阶段性教学质量检测数学试卷答案
15.下列各命题正确的是( )
A. | 0?{0,1} | B. | 0∈{0,1} | C. | {0}∈{0,1} | D. | 0={0,1} |
分析对于函数${f_1}(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$=1-$\frac{2}{{2}^{x}+1}$,定义域为R,由2x>0,可得f1(x)∈(-1,1),满足①,又f1(-x)=-f1(x),函数f1(x)是奇函数,关于原点中心对称,即可判断出结论.同理即可判断出f2(x)是否是“P-函数”.
解答解:①存在M>0,使得对任意的x1,x2∈D,都有|f(x1)-f(x2)|<M?函数f(x)在D上是“有界函数”.
对于函数${f_1}(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$=1-$\frac{2}{{2}^{x}+1}$,定义域为R,∵2x>0,∴0<$\frac{1}{{2}^{x}+1}$<1,∴f1(x)∈(-1,1),∴满足①,又f1(-x)=$\frac{{2}^{-x}-1}{{2}^{-x}+1}$=-$\frac{{2}^{x}-1}{{2}^{x}+1}$=-f1(x),∴函数f1(x)是奇函数,关于原点中心对称.∴f1(x)是“P-函数”.
${f_2}(x)=lg(\sqrt{{x^2}+1}-x)$,定义域为R,令x=tanα$(α∈(-\frac{π}{2},\frac{π}{2}))$,则f2(x)=lg$(\frac{1}{cosα}-tanα)$=lg$\frac{1-sinα}{cosα}$,∵$\frac{1-sinα}{cosα}$∈(0,+∞),∴f2(x)不满足①,因此,f2(x)不是“P-函数”.
故选:B.
点评本题考查了函数的有界性、奇偶性、新定义函数、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.