陕西省2024届高三3月考试(闹钟)数学

陕西省2024届高三3月考试(闹钟)数学试卷答案,我们目前收集并整理关于陕西省2024届高三3月考试(闹钟)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

陕西省2024届高三3月考试(闹钟)数学试卷答案

陕西省2024届高三3月考试(闹钟)数学

8.某二倍体昆虫触角的丝状(A)对棒状(a)为显性,等位基因A、a位于z染色体上,W染色体不含有它的等位基因;触角的形状还受另一对等位基因B、b的控制,其中基因b能抑制基因的表达而使触角呈羽状,基因B没有该效应。现将一只棒状触角雌虫与一只丝状触角雄虫杂交,所得F1中羽状触角雌虫所占比例为1/8.下列相关叙述错误的是()A.B、b基因位于常染色体上B.杂交父本的基因型为bbZ^2Z^aC.F1中棒状触角个体所占比例为1/4D.与触角形状有关的基因型最多有9种

分析(1)求出导函数f'(x)=lnx+1,对x分别讨论,得出导函数的正负区间,根据函数单调性分别讨论t的范围,求出函数的最小值;
(2)不等式整理为a≤x+$\frac{3}{x}$+2lnx恒成立,只需求出右式的最小值即可,构造函数h(x)=x+2lnx+$\frac{3}{x}$,
利用求导的方法得出函数的最小值;
(3)根据不等式的形式可得f(x)>$\frac{x}{{e}^{x}}$-$\frac{2}{e}$,只需使f(x)的最小值大于右式的最大值即可,构造函数m(x)=$\frac{x}{{e}^{x}}$-$\frac{2}{e}$,利用求导得出函数的最大值.

解答解:(1)f(x)=xlnx,
∴f'(x)=lnx+1
当x∈(0,$\frac{1}{e}$),f′(x)<0,f(x)单调递减,
当x∈($\frac{1}{e}$,+∞),f′(x)>0,f(x)单调递增 
①0<t<$\frac{1}{e}$时,f(x)min=f($\frac{1}{e}$)=-$\frac{1}{e}$;       
②$\frac{1}{e}$≤t时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=tlnt; 
∴f(x)min=$\left\{\begin{array}{l}{-\frac{1}{e}}&{,0<t<\frac{1}{e}}\\{tlnt}&{,t≥\frac{1}{e}}\end{array}\right.$,
(2)2f(x)≥g(x)恒成立,
∴a≤x+$\frac{3}{x}$+2lnx恒成立,
令h(x)=x+2lnx+$\frac{3}{x}$,
则h'(x)=1+$\frac{2}{x}$-$\frac{3}{{x}^{2}}$=$\frac{(x+3)(x-1)}{{x}^{2}}$,
由h'(x)=0,得x1=-3,x2=1,
x∈(0,1)时,h'(x)<0;
x∈(1,+∞)时,h'(x)>0.
∴x=1时,h(x)min=1+0+3=4.
∴a≤4.
∴实数a的取值范围是(-∞,4].
 (3)对一切x∈(0,+∞),都有lnx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$成立,
∴xlnx>$\frac{x}{{e}^{x}}$-$\frac{2}{e}$,
∴f(x)>$\frac{x}{{e}^{x}}$-$\frac{2}{e}$,
由(1)可知f(x)=xlnx(x∈(0,+∞))的最小值是-$\frac{1}{e}$,当且仅当x=$\frac{1}{e}$时取到.
设m(x)=$\frac{x}{{e}^{x}}$-$\frac{2}{e}$,(x∈(0,+∞)),则m′(x)=$\frac{1-x}{{e}^{x}}$,
∵x∈(0,1)时,m′(x)>0,
x∈(1,+∞)时,m′(x)<0,
∴m(x)max=m(1)=-$\frac{1}{e}$,
从而对一切x∈(0,+∞),lnx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$成立.

点评考查了利用导函数判断函数的单调性,利用导数求函数的最值,根据单调性对参数的分类讨论求函数的最值.分类讨论思想的应用.

话题:
上一篇:2024年甘肃省普通高中学业水平选择性考试冲刺压轴卷(二)生物学试题答案
下一篇:2023-2024学年高三金太阳3月联考(按动笔)化学JX答案6