2024届陕西省七年级学业水平质量监测(双倒三角形)数学试卷答案,我们目前收集并整理关于2024届陕西省七年级学业水平质量监测(双倒三角形)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2024届陕西省七年级学业水平质量监测(双倒三角形)数学试卷答案
8.常温下,下列各组离子在指定条件下能大量共存的是A.无色溶液中:Cl^-、Cu^2+、K^+、SO4^2-B.含有HClO的溶液中:K^+、Mg^2+、Cl^-、IC.酸性溶液中:SO4^2-、NO3^-、Na^+、Al^3+D.碱性溶液中:Mg^2+、NH4^+、Na^+、Cl
分析(1)求得双曲线的离心率,由题意可得椭圆的离心率,求得a,b,即可得到椭圆方程;
(2)联立直线方程和椭圆方程,运用韦达定理和弦长公式,由三角形的面积公式,结合基本不等式,即可得到最大值.
解答解:(1)双曲线的离心率为$\sqrt{2}$,
由题意可得椭圆的离心率$e=\frac{c}{a}=\frac{{\sqrt{2}}}{2}$,
由2a=4,b2=a2-c2,得a=2,$c=\sqrt{2}$,$b=\sqrt{2}$,
故椭圆M的方程为$\frac{y^2}{4}+\frac{x^2}{2}=1$;
(2)联立方程$\left\{{\begin{array}{l}{y=\sqrt{2}x+m}\\{\frac{x^2}{2}+\frac{y^2}{4}=1}\end{array}}\right.$,得$4{x^2}+2\sqrt{2}mx+{m^2}-4=0$,
由$△={(2\sqrt{2}m)^2}-16({m^2}-4)>0$,
得$-2\sqrt{2}<m<2\sqrt{2}$.且$\left\{{\begin{array}{l}{{x_1}+{x_2}=-\frac{{\sqrt{2}}}{2}m}\\{{x_1}{x_2}=\frac{{{m^2}-4}}{4}}\end{array}}\right.$,
所以$|{AB}|=\sqrt{1+2}|{{x_1}-{x_2}}|=\sqrt{3}•\sqrt{{{({x_1}+{x_2})}^2}-4{x_1}{x_2}}$,
=$\sqrt{3}•\sqrt{\frac{1}{2}{m^2}-{m^2}+4}=\sqrt{3}•\sqrt{4-\frac{m^2}{2}}$.
又P到直线AB的距离为$d=\frac{|m|}{{\sqrt{3}}}$,
所以${S_{△PAB}}=\frac{1}{2}|{AB}|d=\frac{1}{2}\sqrt{3}•\sqrt{4-\frac{m^2}{2}}•\frac{|m|}{{\sqrt{3}}}=\frac{1}{2}\sqrt{(4-\frac{m^2}{2})•{m^2}}$
=$\frac{1}{{2\sqrt{2}}}\sqrt{{m^2}(8-{m^2})}≤\frac{1}{{2\sqrt{2}}}•\frac{{{m^2}+(8-{m^2})}}{2}=\sqrt{2}$.
当且仅当$m=±2∈(-2\sqrt{2},2\sqrt{2})$时取等号,
所以${({S_{△PAB}})_{max=}}\sqrt{2}$.
点评本题考查椭圆方程的求法,注意运用椭圆的离心率公式,考查直线和椭圆联立,运用韦达定理和弦长公式,考查运算能力,属于中档题.