大联考·2024-2025学年(上)安徽高三8月份联考数学试卷答案,我们目前收集并整理关于大联考·2024-2025学年(上)安徽高三8月份联考数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
大联考·2024-2025学年(上)安徽高三8月份联考数学试卷答案
1.过点(0,1)作曲线L:y=lnx的切线,切点为A.又L与x轴交于B点,区城D由L、x轴与直线AB围成,求区域D的面积及D绕x轴旋转一周所得旋转体的体积.
分析由已知条件分别求出|$\overrightarrow{BD}$|=$\sqrt{1+1}=\sqrt{2}$,|$\overrightarrow{GD}$|=$\frac{2\sqrt{2}}{3}$,PG=$\frac{\sqrt{17}}{3}$,由此能求出$\overrightarrow{PG}$与底面ABCD的夹角的正弦值.
解答解:∵在四棱锥P-ABCD中,PD⊥底面ABCD,四边形ABCD为正方形,且PD=AB=1,$\overrightarrow{BG}$=$\frac{1}{3}$$\overrightarrow{BD}$,
∴|$\overrightarrow{BD}$|=$\sqrt{1+1}=\sqrt{2}$,|$\overrightarrow{GD}$|=$\frac{2}{3}|\overrightarrow{BD}|$=$\frac{2\sqrt{2}}{3}$,
PG=$\sqrt{G{D}^{2}+P{D}^{2}}$=$\sqrt{\frac{8}{9}+1}$=$\frac{\sqrt{17}}{3}$,
设$\overrightarrow{PG}$与底面ABCD的夹角为θ,
则sinθ=sin∠PGD=$\frac{1}{\frac{\sqrt{17}}{3}}$=$\frac{3\sqrt{17}}{17}$.
∴$\overrightarrow{PG}$与底面ABCD的夹角的正弦值为$\frac{3\sqrt{17}}{17}$.
故选:B.
点评本题考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.