2025届全国名校高三单元检测示范卷·(八)8数学试卷答案,我们目前收集并整理关于2025届全国名校高三单元检测示范卷·(八)8数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2025届全国名校高三单元检测示范卷·(八)8数学试卷答案
11.椭圆上的点A(-3,0)关于直线y=x和y=-x的对称点分别为椭圆的焦点F1和F2,P为椭圆上任意一点,则|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|的最大值为18.
分析(1)配方法化简f(x)=x2-4x-4=(x-2)2-8,从而分类讨论以确定函数的解析式;
(2)分类讨论各段上的取值范围,从而求最小值的值.
解答解:(1)f(x)=x2-4x-4=(x-2)2-8,
当t>2时,f(x)在[t,t+1]上是增函数,
∴g(t)=f(t)=t2-4t-4;
当t≤2≤t+1,即1≤t≤2时,
g(t)=f(2)=-8;
当t+1<2,即t<1时,f(x)在[t,t+1]上是减函数,
∴g(t)=f(t+1)=t2-2t-7;
从而g(t)=$\left\{\begin{array}{l}{{t}^{2}-2t-7(t<1)}\\{-8(1≤t≤2)}\\{{t}^{2}-4t-4(t>2)}\end{array}\right.$;
(2)当t<1时,t2-2t-7>-8,
当t>2时,t2-4t-4>-8;
故g(t)的最小值为-8.
点评本题考查了配方法的应用及分段函数的应用,同时考查了分类讨论的思想应用.